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Harmonic potential driven by long-range correlated noise

Manuel O. Ca´ceres*
Centro Atómico Bariloche and Instituto Balseiro CNEA and Universidad Nacional de Cuyo,

Av. Ezequiel Bustillo Km 9.5, 8400 San Carlos de Bariloche, Rı´o Negro, Argentina
~Received 16 November 1998; revised manuscript received 21 June 1999!

The probability distribution of a particle in a quadratic potential driven by Gaussian long-range correlated
noise has been obtained. The long-time asymptotic relaxation of the stochastic process has been characterized
in terms of the long-range correlated noise appearing in the corresponding stochastic differential equation
defining the process. The particular case when the particle is driven by a Gaussian color noise has also been
revisited, in this way giving its exact probability distribution for all time. By using a characteristic functional
technique reported previously, results for a non-Gaussian long-range correlated noise are also shown. Emphasis
has been placed on solving the plane rotator in the presence of arbitrary random torques having long-range
correlations. In order to show strong and weak non-Markovian effects coming from different sources of noise,
the undamped free particle under the influence of arbitrary accelerations has been analyzed. We also analyze in
detail the structure of the trajectories of the overdamped and undamped free particle.
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I. INTRODUCTION

The long-range noise problem is connected with the
tistical properties of a strong non-Markovian stochastic p
cess~SP! driven by that noise, i.e., its dynamics never ma
the Markovian dynamics. Consider, for example, the d
placementX(t) of a particle under the influence of an ha
monic potentialU(X)5 1

2 gX2 and a stochastic termj(t); its
equation of motion is governed by the stochastic differen
equation~SDE!

dX

dt
52gX1j~ t !, g>0, XP~2`,`!. ~1.1!

If the noise termj(t) is a zero-mean Gaussian SP with
long-range stationary correlation, say1

^j~ t1!j~ t2!&5
G2t21

~11ut12t2u/t!m , t.0;m>0, ~1.2!

the displacement of the particle~if 0<m,1) will show a
strong non-Markovian character, i.e., its dynamic
properties—even in its asymptotic regime—will not sha
the behavior of the usual overdamped Brownian motion.@We
will be interested in finitet and in the range ofmP@0,1);
this is so because previous analysis of the general
Wiener process has shown that a strong non-Markovian
havior ~superdiffusion! is only obtained ifm,1. The case
m.1 produces weak non-Markovian effects, and the c
m51 has logarithmic corrections.# This is not the case if the
noise is of the short-range type@or if m.1 in Eq. ~1.2!#. In
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this case we say that we are in the presence of a weak
Markovian SPX(t), i.e., after a long transient the dynamic
properties ofX(t) are equivalent~renormalized! with respect
to the Markovian model@1#.

The simplest strong non-Markovian model is wheng
50; in this limit Eq. ~1.1! goes to the generalized Wiene
process@2#, and its statistical properties have been shown
share some aspects of the persistent fractional Brownian
tion ~fBm! @3#. This fact follows from studying the fracta
structure of the realization@4# of the SPX(t) ~see Appendix
A for a short review!. Other strong non-Markovian process
are those related to second order SDE’s when the noise
@the random forcej(t)] is of the long-range type of Eq
~1.2!. In the present paper the second order S
(d2/dt2)f(t)1g(d/dt)f5j(t) will be used to study a ran
dom phase problem~see Sec. III A!. A similar situation oc-
curs when studying the evolution equation of an undam
free particle, i.e., an equation of motion like (d2/dt2)Y(t)
5j(t). This problem can also be worked out using our fun
tional approach for any kind of noise~Gaussian or not; see
Appendix B!. In particular, for a long-range Gaussian noi
we show in Sec. III B that the critical valuem51 is also the
threshold between the strong and weak non-Markovian
havior for the undamped free particle.

The analysis of weak non-Markovian stochastic proces
has been done using different techniques@5–7#, among
which path integral formulations have been very succes
for treating color noise in arbitrary potentials@8#. However,
the path integral technique does not seem to be very us
for studying some of the issues appearing in strong n
Markovian processes. The literature on weak non-Markov
problems is quite vast, but long-range noise problems h
not been solved due to the intrinsic difficulties of the pert
bation theory; only recently Masoliver and Wang@9# studied
the probability density functions associated with line
Langevin-like equations having a long-range Gaussian no
ic
5208 © 1999 The American Physical Society
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PRE 60 5209HARMONIC POTENTIAL DRIVEN BY LONG-RANGE . . .
@In that reference, Eq.~4.2!, the problem has been worke
out by using the Tauberian theorem; therefore, in order
fulfill the hypothesis of that theorem the values ofa5m are
restricted tomP(1,2). This is not the case in the prese
paper because we have carried out explicit integrations.# Us-
ing our functional approach, we can go one step further,
study ~in an exact way! cosine correlations associated wi
the random phase problem. In the present paper we giv
detailed discussion on the strong non-Markovian probl
using the advantages of some exact functional results pr
ously reported@2#. As an additional bonus we can trivially
work out the Gaussian color-noise~short-range! problem for
the harmonic potential.

We are aware that our method works at least for the q
dratic potential because we already have the exact genera
functional @2# of the SPX(t). On the other hand, our ap
proach can also be used to work out arbitrary linear stoch
tic differential equations, autonomous or not, with or witho
inertia, and for any structure of noise having long-range c
relations@2,10#. What is even more important is that usin
the present results we can also study some related bou
problems@11#. Hence our functional approach is an enligh
ening contribution to the analysis of strong non-Markovi
effects on arbitrary linear SDE’s. An application of th
present approach is the study of the dipole correlation fo
rigid rotator in the presence of Gaussian random torq
@12,13,1# having long-range correlations. For this proble
the calculation of the moments and/or correlations of
cosine of the angle is a nontrivial task which can be tack
using our functional approach@see, for example, solution
~3.4! and ~3.8!#.

It is well known that if a SPX(t) is non-Markovian, its
complete characterization demands knowledge of the wh
Kolmogorov hierarchy, i.e., them-time joint probability dis-
tribution P@X(t1);X(t2);...;X(tm)#, or equivalently all the
m-time moments ^X(t1)X(t2)¯X(tm)& or cumulants
^^X(t1)X(t2)¯X(tm)&&. When partial knowledge of the SP
is required, the one-time probability distributionP@X(t1)# is
enough. This is the case when only one-time moments of
process^X(t)m& are needed. In order to know the who
Kolmogorov hierarchy, knowledge of the characteristic fun
tional GX„@k(t)#…5^exp*ik(t)X(t)dt& is required, which of
course is a much more complicated object than the one-t
characteristic function@1#. The notationGX„@k(t)#… empha-
sizes thatG depends on the whole test functionk(t), not just
on the value it takes at one particular timet j . The conver-
gence of the integral is achieved because the functionsk(t)
may be restricted to those that vanish for sufficiently larget.
As a matter of fact, the possibility of having a closed expr
sion for the noise characteristic functional allows us to fin
by quadrature, the whole Kolmogorov hierarchy of the
X(t). We note that in this paper we do not make use of a
partial differential equation, and that the results that
present are exact solutions for arbitrary noise.

II. A STRONG NON-MARKOVIAN GAUSSIAN PROCESS

The equation of motion for the position of a one
dimensional overdamped Brownian particle in a quadra
potential and in a generalized medium is characterized
Eq. ~1.1!. There j(t)P Re is the time-dependent rando
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force representing the medium~the noise!. When j(t) is a
zero-mean Gaussian white noise, i.e.,^j(s1)j(s2)&
5G2d(s12s2), Eq. ~1.1! gives rise to the usual Fokker
Planck dynamics@1#. If the random force were a short-rang
noise, characterized by the stationary correlation

^j~ t1!j~ t2!&5
G2

2u
exp~2ut12t2u/u!, u>0 ~2.1!

the dynamics of the particle would be driven by a co
noise, which has been studied extensively in the past@5–8#.

In the present paper we will be interested in the resu
coming from the long-range correlation~1.2!. Thus let us
allow the possibility of having an arbitrary zero-mean Gau
ian noise with correlation̂j(t1)j(t2)&. ~For a non-Gaussian
noise with a long-range correlation, use, for example
Campbell noise with a power-law shape pulse@2#.! Note that
a white-noise force can be reobtained from~2.1! in the limit
u→0, while the ballistic case can be obtained from Eq.~1.2!
in the limit m→0. @Only in the simultaneous limitsm→0 and
t→` is the long-range correlation~1.2! proportional to the
long-correlated limitu→` of the short-range model~2.1!;
this fact shows the difference between both correlation fu
tions. Analysis concerning this type of correlation has be
applied to the study of a diffusion-advection equation with
long-range random velocity field@14#.#

Let us consider the noisej(t), with tP@0,̀ #, to be a
zero-mean Gaussian noise of intensityG2 and characterized
by some correlation. Its functional will be

Gj~@k~ t !# !5expS 21

2 E
0

`E
0

`

k~s1!k~s2!

3^j~s1!j~s2!&ds1ds2D , ~2.2!

where the correlation̂j(s1)j(s2)& could be given by Eqs.
~1.2! or ~2.1!, or any other suitable function.

By using proposition 1 of Ref.@2#, it follows that the
characteristic functional of the SPX(t) is, for any noisej(t),
given by

Gx„@Z~ t !#…5e1 ik0X0GjS F E
t

`

eg~ t2s!Z~s!dsG D , ~2.3!

whereX0 is the initial condition of the SPX(t) andk0 is a
functional ofZ(t) given by

k05E
0

`

e2gsZ~s!ds. ~2.4!

For the Gaussian case using Eq.~2.2! we obtain

GX„@Z~ t !#…5e1 ik0X0 expF21

2 E
0

`E
0

`S E
s1

`

eg~s12s!Z~s!dsD
3S E

s2

`

eg~s22s8!Z~s8!ds8D
3^j~s1!j~s2!&ds1ds2G . ~2.5!
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A non-Gaussian case is sketched in Appendix B. N
that for any structure of noise, allm-time moments of the SP
X(t) follow from mth-order functional differentiation o
GX„@Z(t)#…, i.e.,

^X~ t1!X~ t2!¯X~ tm!&

5 i 2m
d

dZ~ t1!
¯

d

dZ~ tm!
GX„@Z~ t !#…U

Z50

. ~2.6!

On the other hand, the Kolmogorov hierarchy can be
tained by quadrature from the functional. In general, we
invert the characteristic functional by introducing th
n-dimensional Fourier transform

P~X@ t1#;X@ t2#;...;X@ tn# !

[P~x1 ,t1 ;x2 ,t2 ;...;xn ,tn!

5
1

~2p!n E ¯E dk1¯dkn expS 2 i(
i 51

n

kixi D
3†GX„@Z~ t !‡!‡Z~ t !5k1d~ t2t1!1¯1knd~ t2tn! . ~2.7!

Note that Eq.~2.3! is a result which allows us to obtain
complete characterization of a non-Markovian Gaussian
X(t). For example, the one-time probability distributio
P(X@ t1#)[P(x1 ,t1) is just given in terms ofGX„@Z(t)#…
evaluated with the test functionZ(s)5k1d(s2t1). From
Eqs.~2.5! and ~2.7! we see that to know the one-time pro
ability distribution, we must calculate the integral

s~ t1![
1

2 E0

t1E
0

t1
eg~s12t1!eg~s22t1!^j~s1!j~s2!&ds1ds2 .

~2.8!

Thus the one-time~conditional! probability distribution
P(x,t) reads

P~x,t !5
1

2p E e2 ikx exp„2s~ t !k21 iB~ t !k…dk

51/A4ps~ t ! exp@2„x2B~ t !…2/4s~ t !#; ~2.9!

in general,s(t) is given by Eq.~2.8! and B(t)5X0e2gt.
Therefore, for the Gaussian case the analysis of the sta
ary probability distribution, and the transient relaxation
the SPX(t) is reduced to the study of the generalized d
persions(t).

A. Calculation of s„t5`…

Equation ~2.8! can be written in a more suitable wa
making easier the analysis of its stationary value and als
its asymptotic long-time behavior:
e

-
n

P

n-
f
-

of

s~ t !5
1

2 H E
0

t

ds1E
0

s1
eg~s12t !eg~s22t !^j~s1!j~s2!&ds2

1E
0

t

ds1E
s1

t

eg~s12t !eg~s22t !^j~s1!j~s2!&ds2J .

~2.10!

Using the fact that the correlation^j(s1)j(s2)& is station-
ary, the generalized dispersions(t) can be rewritten in the
form

s~ t !5
1

2 H E
0

t

e22gs1ds1E
0

t2s1
e2gs2 ^j~s2!j~0!&ds2

1E
0

t

e2gs1ds1E
0

s1
e2g~s12s2!^j~s2!j~0!&ds2J .

~2.11!

From this expression, and using the Laplace transform n
tion Lu@ f (t)#[*0

`e2uzf (z)dz, i.e., z→u, it is possible to
see that the stationary generalized dispersion is given by

s~ t5`!5
1

2 S 1

2g
Lg@^j~z!j~0!&#

1LgF E
0

s1
e2g~s12s2!^j~s2!j~0!&ds2G D . ~2.12!

Therefore, by using Laplace’s convolution theorem, we
nally arrive at the expression

s`[s~ t5`!5
1

2g
Lg@^j~z!j~0!&#. ~2.13!

This is an exact result which gives the generalized disp
sion of the stationary probability distribution of a non
Markovian Brownian particle in a harmonic potential, in th
presence of an arbitrary correlated Gaussian noise; i.e., f
Eq. ~2.9! the stationary nonequilibrium probability distribu
tion is

Pst~x!5
1

A4ps`

expS 2x2

4s`
D , ~2.14!

where the generalized stationary dispersions` is given by
Eq. ~2.13!.

In order to exemplify formula~2.13!, let us first reobtain
the familiar white-noise case~Fokker-Planck dynamics!, and
let us also compute the well studied color-noise probl
~weak non-Markovian case! before analyzing the long-rang
case.

1. White-noise case

Using our approach this case is trivial becau
Lg@^j(z)j(0)&#5Lg@G2d(z)#5G2/2. Therefore, the station
ary generalized dispersion turns out to bes`5G2/4g, as can
be expected from the corresponding Smoluchowski equa
] tP(x,t)5@]xgx1(G2/2)]x

2#P(x,t).
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2. Color-noise case

This is achieved by using correlation~2.1! in Eq. ~2.13!.
First we calculateLg@^j(z)j(0)&#5Lg@(G2/2u)exp(2z/u)#
5(G2/2)(gu11)21. Therefore, the generalized stationa
dispersion gives

s`5
G2

4g
~gu11!21, g.0, u>0, ~2.15!

which of course is in agreement with reported results
tained by using other techniques@5–8#, showing in this way
the simplicity and elegance of our formula~2.13!.

3. Long-range case

The case where the noise has long-range correlation
not been addressed before, to our knowledge. The impo
fact is that this case can also be analyzed by using correla
~1.2! in formula ~2.13!. First we have to calculate th
Laplace transform of the long-range noise correlation fu
tion:

Lg@^j~z!j~0!&#5LgF G2t21

~11z/t!mG
5~gt!m21G2egtG~12m,gt!;

~2.16!

hereG(v,x) is the incomplete gamma function@15#. There-
fore, the stationary generalized dispersion reads

s`5
tG2

2
~gt!m22egt G~12m,gt!, g.0, m>0. ~2.17!

This formula shows that the most important parameter
our long-range model, is the exponentm ~the noise correla-
tion power-law parameter!. From this result we see a remar
able difference compared to short-range models~weak non-
Markovian effects!. For fixedg and t, increasing the noise
correlation, i.e.,m→0, the stationary dispersions` in-
creases. This phenomenon is exactly opposite to that
tained from a short-range correlated noise, i.e., increasinu
in Eq. ~2.15! predicts, for a fixedg, a decreasing dispersio
s` . This result can be interpreted heuristically because
mP@0,1) the increment of the SPX(t) shows a persistenc
in its corresponding generalized Wiener increments~similar
to superdiffusion in the fBm!, therefore leading to an in
crease in the dispersions` ~see Appendix A for a detailed
discussion!. For a fixedm, the behavior of the generalize
dispersions` as a function of the friction parameterg is the
same for strong or weak non-Markovian models, i.e., red
ing ~or increasing! g implies a corresponding increase~or
reduction! of the stationary dispersions` .

Thus we can conclude that a long-range~correlated! noise
induces strong non-Markovian effects on the SPX(t), which
change the behavior of the stationary dispersions` as a
function of the noise correlation. Of course the strong n
Markovian effect also changes the dynamics~relaxation! of
SP X(t); this issue will be examined in detail in the ne
sections.
-
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B. Asymptotic long-time behavior of s„t…

The long-time regime of Eq.~2.8! can be estimated from
the first term in Eq.~2.11! if we multiply this result by a
factor of 2. Therefore, the long-time limit of the dispersio
can be written as

s~ t !5E
0

t

e22gs1ds1E
0

t2s1
e2gs2^j~s2!j~0!&ds2

5t2E
0

1

e22gtz1dz1E
0

12z1
e2gtz2^j~ tz2!j~0!&dz2 .

~2.18!

The integral indz2 , in Eq.~2.18!, can be worked out exactly
If we use the long-range correlation~1.2!, we obtain

G2E
0

t2z1
e2gtz2

t21

~11tz2 /t!m dz2

5
egt~gt!m21G2

t
@G~12m,gt!

2G„12m,gt1gt~12z1!…#, ~2.19!

whereG(n,Z) is the incomplete gamma function@16#. Using
Eq. ~2.19! in Eq. ~2.18!, we obtain two contributions: The
first one gives

tG2egt~gt!m21G~12m,gt!E
0

1

e22gtz1dz1

5s`~12e22gt!, ~2.20!

where s` is given in Eq.~2.17!. The second contribution
gives

2tG2egt~gt!m21 E
0

1

e22gtz1G„12m,gt1gt~12z1!…dz1 .

~2.21!

This integral can also be approximated in the long-time lim
t→`. Sincez1P@0,1# and, using the expansion of the in
complete gamma function,G(n,Z);e2Z/Z12n in the limit
of Z→`, it is possible to see~if 0<m,1) that Eq.~2.21!
reduces to

2tG2egt~gt!m21E
0

1

e22gtz1
exp„2gt~12z1!…

@gt~12z1!#m dz1

52
G2

g
eg~t2t !~gt !12m~gt!m21

G~12m!

G~22m!

3M ~1,22m,2gt !, ~2.22!

where M (a,c,z) is the Kummer confluent hypergeometr
function @16#. Therefore, the long-time dispersions(t) is
given by the sum of the expressions~2.20! and~2.22!. Using
the power expansion of the Kummer functionM (c,a,2z)
;@G(c)/G(c2a)#(2z)a for large z and c2aÞ0,21,
22, . . . , for thelong-time behavior we obtain
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5212 PRE 60MANUEL O. CÁCERES
s~ t !;s`F12
2~gt !22me2gt

G~12m,gt!
2e22gt1O~e22gt!G ,

g.0, 0<m,1, ~2.23!

where O(e22gt) means an order smaller thane22gt. This
result shows that the strong non-Markovian effect chan
the relaxation of the particle in the harmonic well. Ifm
P@0,1) the relaxation is nonexponential, and it is charac
ized by the law;(gt)22me2gt.

For long-range correlated models, it is also expected
similar anomalous behavior will occur in calculating mo
complex objects such as the correlation functi
^^X(t1)X(t2)&&, see, for example, Sec. III. Our approa
gives us the possibility to do this from Eq.~2.6!. In fact the
analysis is reduced to the calculation of the two-time integ

s~ t1 ,t2![
1

2 E0

t1E
0

t2
eg~s12t1!eg~s22t2!^j~s1!j~s2!&ds1ds2 ,

which is the kernel needed to write the two-time joint pro
ability distribution P(x1 ,t1 ;x2 ,t2). See Appendix A for a
specific example of this calculation in the simplest situati
the generalized strong non-Markovian Wiener particle.

We emphasize that in the presence of short-range co
lated noise, the relaxation—after a transient—will be exp
nential. In this particular case, using the short-range corr
tion ~2.1!, the generalized dispersion gives

sshort~ t !5
G2

4g H 12e22gt

~12u2g2!

1
gu~2e2„g1~1/u!…t2e22gt21!

~12u2g2! J . ~2.24!

This expression is valid at all times and for anyu>0 and
g>0. Note that although both summands in Eq.~2.24! have
non-Markovian contributions, the long-time limit is expo
nential. As a matter of fact, using Eq.~2.24! in Eq. ~2.9!
gives the exact one-time probability distribution at all time
for a particle in a harmonic well under the influence of
Gaussian color noise. In the limitu→0 this expression co
incides, of course, with the well known result that could
obtained from Fokker-Planck dynamics:swhite(t)5(G2/
4g)(12e22gt).

III. REMARKS ON SECOND-ORDER SDE

A. Linear SDE with inertia „the rigid rotator …

An interesting application of the preceding sections is
study of a plane rotator@12,13# under the influence of long
range random torques. In this case the SDE is of sec
order,

d2

dt2
f1g

d

dt
f5j~ t !, fP~2`,`!, ~3.1!

with an arbitrary noisej(t). @A nonautonomous case cou
be if the random torques are time-periodically modulated@2#.
Note that~3.1! can be trivially written in terms of variable
s

r-

at

l

-

:

e-
-
a-

,

e

nd

~f,ḟ!, so the marginal SPf will always be non-Markovian.#
The exact generating functional of the SPf(t), for t
P@0,̀ #, is

Gf~@Z~ t !# !5expi ~k0f01q0ḟ0!

3GjS F E
t

`

eg~ t2s!E
s

`

Z~s8!ds8dsG D ,

~3.2!

wheref0[f(0) andḟ0[ḟ(0) are the initial conditions of
the rotator, and k05*0

`Z(s)ds and q0

5*0
`e2gs*s

`Z(s8)ds8ds. Formula ~3.2! follows using
propositions 1 and 3 of reference@2#. This result can also be
seen puttingX(t)5(d/dt)f in Eq. ~1.1!, and then using Eq
~A2! with b(t)51 and the assignationW→f andj→X.

In formula ~3.2! the generating functionalGj„@k(t)#…
characterizes an arbitrary noisej(t). If we assume a Gauss
ian long-range noise we have to use Eqs.~2.2! and ~1.2!.
Thus in this particular Gaussian caseGf„@Z(t)#… adopts its
simplest structure, which can immediately be used to ca
late all them-time moments of the SPf(t), and in general
any m-time correlation and cumulant of the stochastic an
f(t).

A remarkable conclusion from Eq.~3.2! is that whenever
that we have a closed expression for the functional of
noise Gj„@k(t)#… ~see Appendix B for non-Gaussian e
amples!, nontrivial objects such as ^cosf(t1)&,
^cosf(t1)cosf(t2)&, etc. can be worked out—in an exa
way—using trigonometric algebra. This is so because
functional of the stochastic cosine is given b
^cos*0

`f(t)Z(t)dt&5ReGf(@Z(t)#). Then using Eq.~3.2!, for
the cosine functional we obtain the exact result

K cosE
0

`

f~ t !Z~ t !dtL
5ReH ei ~k0f01q0ḟ0!GjS F E

t

`

eg~ t2s!E
s

`

Z~s8!ds8dsG D J .

~3.3!

We remark that this result is valid for any noise structu
Assuming a Gaussian long-range noise, for the mean v
of the cosine we obtain the result

^cosf~ t1!&5Re$Gf„@Z~ t !#…%Z~ t !5d~ t2t1!

5cosFf01
1

g
~12e2gt1!ḟ0GexpF2

1

2( ~ t1!G ,
~3.4!

whereS(t) is given by

(~ t !5E
0

t

ds1E
0

t

ds2E
s1

t

eg~s12t8!dt8

3E
s2

t

eg~s22t* !dt* ^j~s1!j~s2!&. ~3.5!
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From Eq.~3.5!, and using Eq.~1.2!, it is possible to see tha
a strong non-Markovian behavior is found only ifm,1,
~logarithmic corrections happen for the casem51). Hence
in the long-time limit we obtain

(~ t !'
2G2tm21g22

~22m!~12m!
t22m, t@t,mP@0,1!, ~3.6!

predicting an asymptotic anomalous dynamics^cosf(t)&
'exp„2@G2tm21g22/(22m)(12m)#t22m

…. Only if m.1,
or if the correlation function of the noise is of the short-ran
type, will the long-time cosine relaxation be exponent
^cosf(t)&'exp(2Ct), with C5const.

The cosine-cosine correlation is another important ob
which can be studied considering the average^cos„f(t1)
2f(t2)…&. In order to evaluate this mean value we can u
the cosine functional with the test functionZ(t)5d(t2t1)
2d(t2t2). Then using Eq.~3.3! we obtain the expression
is

b

n
p

ef
ll

S
ol
he
l

ct

e

^cos„f~ t1!2f~ t2!…&5ReH expS i

g ~e2gt22e2gt1!ḟ0D
3GjS Fu~ t12t !

eg~ t2t1!

g

2u~ t22t !
eg~ t2t2!

g G D J ; ~3.7!

hereu(t) is the step function. We note that Eq.~3.7! is a
result valid for any noise structure. For the particular case
a Gaussian long-range noise, using Eqs.~2.2! and ~1.2! we
can obtain an exact expression for all time. It is interesting
study its asymptotic behavior, as it is then possible to
that, in the long-time limit, whenm,1, a strong non-
Markovian dynamics is obtained:
^cos„f~ t1!2f~ t2!…&'cosS ḟ0

g
~e2gt22e2gt1! D expS 2

G2tm21g22

~12m!~22m!
ut12t2u22mD , t1 ,t2@t, mP@0,1!. ~3.8!

Only if m.1, or if the correlation function of the noise is of the short-range type, will the cosine-cosine correlation~in the
long-time regime! be exponential:

^cos„f~ t1!2f~ t2!…&'cosS ḟ0

g
~e2gt22e2gt1! D expS 1

G2g22

~12m!
ut12t2u D , t1 ,t2@t, m.1 , ~3.9!
-
on-
d in
tain
i.e., we obtain the same dynamics as when using white no

B. Undamped free particle under arbitrary random
accelerations

Here we show that our functional approach can also
used to study the influence of non-Gaussian noises with
without long-range correlations. To fix ideas, let the seco
order SDE be the one associated to an undamped free
ticle in presence of an arbitrary random force@in general
with ^j(t)&Þ0],

d2

dt2
Y~ t !5j~ t !, YP~2`,`!, ~3.10!

so that the random acceleration is an arbitrary noise~Gauss-
ian or not! characterized by its functionalGj(@k(t)#); many
non-Gaussian noise functionals can be found in R
@1,2,11,17,18#, for example, radioactive noise, Campbe
noise, dichotomous noise, Le´vy noise@10#, etc. ~see Appen-
dix B!. Therefore, the complete characterization of the
Y(t) can be given in terms of such noise functionals. F
lowing steps similar to those we made in Sec. III A, for t
functional of the SPY(t) we obtain

GY„@Z~ t !#…5expi ~k0Y01q0Ẏ0!

3GjS F E
t

`E
s

`

Z~s8!ds8dsG D , ~3.11!
e.

e
or
d
ar-

s.

P
-

whereY0[Y(0) andẎ0[Ẏ(0) are the initial conditions of
the free particle, and k05*0

`Z(s)ds and q0

5*0
`*s

`Z(s8)ds8ds. Now we focus on a Gaussian long
range noise, and we will show the occurrence of strong n
Markovian results; non-Gaussian examples can be foun
Appendix B. Hence for the Gaussian noise case we ob
that the one-time characteristic function of SPY(t) is given
by

GY~k1 ,t1!5GY„@Z~ t !5k1d~ t2t1!#…

5ei ~k1Y01k1t1Ẏ0! expS 2
1

2
k1

2 (~ t1! D ,

~3.12!

whereS(t) can be read off from Eq.~3.5!, taking the limit
g50, and we can write

(~ t !52E
0

t

ds1E
0

s1
ds2~ t2s1!~ t2s2!^j~s1!j~s2!&. ~3.13!

Using Eq. ~1.2! in Eq. ~3.13! we obtain ~for mÞ1, 2, 3,
and 4!
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(~ t !52G2t21H tt3

3~m21!
2

t2t2

2~m21!~m22!
1

t4

~m21!~m22!~m23!~m24!

1S t

t1t D m @~32m!t41~823m!tt31~623m!t2t22mt3t2t4#

~m21!~m22!~m23!~m24! J . ~3.14!
y
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@Note that we do not use the Tauberian theorem~as was used
in Ref. @9#! to calculateS(t); therefore, we can analyze an
value ofm.0.]

From this result it is simple to see that ifm,1, the
asymptotic~long-time limit! of the varianceS(t) is anoma-
lous:

(~ t !'
2G2tm21t42m

~42m!~22m!~12m!
, t @t,mP@0,1!. ~3.15!

The casem50 gives the ballistic limit, and the casem51
gives logarithmic corrections. Note from Eq.~3.13! that the
Gaussian white-noise case~undamped free particle! gives the
result S(t)51/3G2t3. From Eq.~3.14! it is possible to see
that if m.1, a weak non-Markovian behavior occurs, i.
after the transient the following asymptotic behavior
reached:

(~ t !'
2

3~m21!
G2t3, t@t,m.1, ~3.16!

as in the white-noise case.
From Eq. ~3.12! it is also possible to obtain th

asymptotic scaling of the one-time characteristic functi
therefore, the scaling structure of the SPY(t) can be ana-
lyzed. Using Eq.~3.12! with Y05Ẏ050, and Eq.~3.15!, we
obtain the following asymptotic scaling:

GYS k

AL42m
,Lt D→GY~k,t !, t@t,mP@0,1!. ~3.17!

Nevertheless, as noted above, ifm.1 a weak non-
Markovian behavior is obtained; hence its asymptotic sca
is the same as when using a white-noisej(t), i.e.,

GYS k

AL3
,Lt D→GY~k,t !. ~3.18!

Using Eq. ~3.17!, we can conclude, formP@0,1), that the
dynamics of the strong non-Markovian SPY(t) is different
compared with the case where the driving noisej(t) is
white. The spectrum of the SPY(t) behaves asymptotically
like

SY~ f !}
1

f 52m , t@t,mP@0,1!. ~3.19!

Of course, in the weak non-Markovian case,m.1, we
asymptotically reobtainSY( f )}1/f 4, as expected. We not
that the box counter fractal dimension@10# of the SPY(t)
would give asymptotically
,

;

g

DB5
m

2
, t@t,mP@0,1!, ~3.20!

and the divider fractal dimension along the curveY(t) would
give asymptotically

D5
2

42m
, t@t,mP@0,1!. ~3.21!

But we cannot take~3.20! and ~3.21! as correct fractal di-
mensions because they are less than one. So the fracta
mensions equal the topological dimension.

IV. GENERAL CONCLUSIONS

The strong non-Markovian harmonic potential proce
X(t) has been completely characterized in terms of its ex
functional GX„@Z(t)#…; see Eq.~2.5! for the Gaussian case
Particular stress has been put on long-range correlated n
where ^j(t1)j(t2)& is of the form given in Eq.~1.2!. This
fairly general method is based upon knowing the charac
istic functional of the noiseGj„@k(t)#…, which in the present
paper has mainly been assumed to be Gaussian~non-
Gaussian statistics will be worked out in Appendix B!. Thus
anym-time moment of the SPX(t) follows straightforwardly
by taking the functional derivative ofGX„@Z(t)#…; see Eq.
~2.6!.

We have given an exact expression for the station
~nonequilibrium! probability distribution of a particle in a
harmonic potential and in the presence of an arbitrary co
lated Gaussian noise; see Eq.~2.14!. There the generalized
stationary dispersions` has been calculated explicitly@see
Eq. ~2.13!# for two nontrivial cases: the color-noise ca
~2.15! ~weak non-Markovian effects!, and the long-range
case~2.17! ~strong non-Markovian effects!.

Our physical motivation to study this type of linear SD
was the model of a rigid rotator in the presence of arbitr
Gaussian long-range random torques. This problem
worked out in Sec. III A, and its solution, for any noisej(t),
was given in Eq.~3.2!. In particular, the asymptotic behavio
of the cosine relaxation and the cosine-cosine correla
have been calculated for the Gaussian long-range case.
undamped free particle has been studied in order to ana
its scaling structure as a function of the exponent of
power law appearing in the long-range correlated noise.
show other applications of our functional technique, the o
time characteristic function of the undamped free particle
explicitly been calculated—in an exact way—for seve
non-Gaussian noises~see Appendix B!.

The present formulation is exact, and provides a syste
atic starting point to obtain higher-order moments or to co
pute the whole Kolmogorov hierarchy for any structure
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the noise; see Eq.~2.7!. The two-time correlation function
^^W(t1)W(t2)&& for the generalized strong non-Markovia
Wiener particle has been calculated to show the persiste
of its generalized increments; see Appendix A.

We note that there are no limitations in the exact calcu
tion of any higher-order moment, etc. In the present pa
we have used a functional technique to solve a problem w
natural boundary conditions; the application of this meth
to a problem with a non-natural boundary condition@11# is
under investigation.
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APPENDIX A: THE TWO-TIME CUMULANT OF A
GAUSSIAN STRONG NON-MARKOVIAN PROCESS

In order to have a more comprehensive idea of wha
long-range correlated noise produces in a SDE, let us pre
here the generalized strong non-Markovian Wiener parti
Let the evolution equation of the displacement of a parti
be characterized by the nonautonomous SDE

d

dt
W5b~ t !j~ t !, WP~2`,`!, ~A1!

with b(t) a sure function of time andj(t) an arbitrary noise.
Using proposition 3 of Ref.@2#, the characteristic functiona
of the SPW(t), for any noisej(t), characterized by its
functionalGj„@k(t)#…, is given by

GW„@Z~ t !#…5e1 ik0W0GjS Fb~ t !E
t

`

Z~s!dsG D , ~A2!

where k05*0
`Z(s)ds, and W0[W(0) is the initial condi-

tion.
For the Gaussian caseGj„@k(t)#… is given in Eq.~2.2!,

and ^j(t1)j(t2)& can be any correlation, for example th
long-range case~1.2!. Let us now study, in the autonomou
caseb(t)51, the correlation function of the displacement
the particlê ^W(t1)W(t2)&&; this function can easily be cal
culated by using functional derivatives as in Eq.~2.6!:

^^W~ t1!W~ t2!&&5 i 22
d2 ln GW~@Z~ t !# !

dZ~ t1!dZ~ t2!
U

Z50

5 i 22
d2

dZ~ t1!dZ~ t2! F iW0E
0

`

Z~s!ds

2
1

2 E0

`E
0

`S E
s1

`

Z~s!dsD
3S E

s2

`

Z~s8!ds8D
3^j~s1!j~s2!&ds1ds2G

Z50

. ~A3!
ce

-
r

th
d

-

a
nt

e.
e

Without loss of generality, we now assume thatt1<t2 ; then
we obtain

^^W~ t1!W~ t2!&&5E
0

t1E
0

t2
^j~s1!j~s2!&ds1ds2

52s~ t1!1E
0

t1
ds1E

t1

t2
ds2^j~s1!j~s2!&.

~A4!

For the particular case of noisej(t) with long-range corre-
lation, like that in Eq.~1.2!, the result~for mÞ$1,2%) is

1

G2
^^W~ t1!W~ t2!&&5

2t1

~m21!
2

t

~m21!~m22!

1
tm21

~m21!~m22!
@~ t11t!22m

1~ t21t!22m2~ t22t11t!22m#.

~A5!

In the limits t1@t andt2@t such thatt22t1;O(t), and
if the noise parametermP@0,1), we see that the two-poin
second cumulant of the SPW(t) increases with time with a
power law ;(t1

22m1t2
22m) ~i.e., superdiffusion!. Thus a

long-range correlated noise induces a nonlinear tempora
havior in ^^W(t1)W(t2)&& as in the fBm forHP(1/2,1#.
Note also that both times are present in this nonstation
correlation function. If the noise parameter ism.1, we re-
obtain, in the asymptotic long-time regime, the Wiener res
^^W(t1)W(t2)&&} min(t1,t2).

From the exact result~A5! it is possible to see that, in th
long-time regime, ifmP@0,1), the increments of the S
W(t) are not statistically independent. The casem51 also
shows non-Markovian effects with logarithmic correction
To be more precise, let us calculate here a normalized
relation function of future increments@W(t)2W(0)# with
past increments@W(0)2W(2t)#:

C~ t ![
1

^W~ t !2&
^@W~0!2W~2t !#@W~ t !2W~0!#&

5
1

^W~ t !2&
$^W~0!W~ t !&2^W~0!2&2^W~2t !W~ t !&

1^W~2t !W~0!&%. ~A6!

From Eq.~A5! it is simple to show that~for 0,mÞ1,2)

C~ t !5
t1tm21~t12t !22m

2~m22!t22t12tm21~t1t !22m . ~A7!

Therefore~in the asymptotic long-time limit!, only if 0<m
,1 are past increments correlated with future increme
i.e., a long-range noise withmP@0,1) induces infinitely
long-run correlations in the increments of the SPW(t), as in
the persistent fBm. Nevertheless, ifm.1 ~weak non-
Markovian behavior! the normalized correlation function
C(t) goes to zero in the limitt→`, and is therefore in
agreement with a Wiener-like behavior.
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It is also possible to see, using the fact that the noisej(t)
is symmetric and adopting the initial conditionW(0)[W0
50 in Eq. ~A3!, that the variance of an arbitrary increme
of our SPW(t) is given by @for 0,mÞ1,2 and assuming
t1<t2]

1

G2
^@W~ t2!2W~ t1!#2&5

2

~m21!~m22!
@~ t22t1!~m22!

2t1tm21~t1t22t1!22m].
~A8!

Thus for larget22t1 such thatt22t1@t, and if the noise
parametermP@0,1), we see that̂ @W(t2)2W(t1)#2& in-
creases with time as;(t22t1)22m, in agreement with the
picture of a fBm, i.e., a long-range correlated noisej(t)
induces a power-law behavior in the variance of the inc
ments of the SPW(t). If the noise parameter ism.1 we
reobtain—in the asymptotic long-time regime—a Wien
like result: ^@W(t2)2W(t1)#2&;ut22t1u.

From Eq.~A5! and consistently from Eqs.~A7! and~A8!,
it is possible to see that the spectrum behaves asymptoti
like SW( f )}1/f 32m, the box counter fractal dimension of th
record isDB511(m/2), and the fractal divider dimensio
along the curveW(t) is D52/(22m). See Refs.@4,10# to
study this fractal analysis in terms of the asymptotic scal
W(Lt)→AL22mW(t) for t@t andmP@0,1!.

APPENDIX B: UNDAMPED FREE PARTICLE UNDER
NON-GAUSSIAN NOISES

Here we present a few results concerning non-Gaus
noise@2,11#. Let us assume, for example, that the source
noise in the SDE~3.10! is of the radioactive type; thus w
use the corresponding noise’s functionalGj„@k(t)#…
5@b*0

` exp„2tb1 i *0
t k(s)ds…dt#j0 for tP@0,̀ ). Here j0

represents the number of active nuclei att50, andb is the
probability per unit of time that an individual decay occu
note that this noise is nonstationary. Then using Eq.~3.11!,
we obtain, for the one-time characteristic function of the
Y(t),

GY~k1 ,t1!5ei ~k1Y01k1t1Ẏ0!

3FbE
0

t1
expS ~ ik1t12b!t2 i

k1

2
t2Ddt

1expS i
k1

2
t1
22bt1D G j0

, ~B1!

whereY0 andẎ0 are the initial conditions of the SPY(t). It
is simple to see that Eq.~B1! fulfills normalizationGY(0,t)
51, and, for example, the first moment is given by

^Y~ t !&5 i 21
d

dk
GY~k,t !uk50

5~Y01tẎ0!1
j0

b2 ~bt211e2bt!. ~B2!

Note that the SPY(t) is also nonstationary, as expected, a
due to the fact that the correlation of the noise is of
-

-

lly

g

an
f

;

P

e

short-range class a nonanomalous behavior is~asymptoti-
cally! obtained for the SPY(t).

For a random force having the structure of a Campb
noise, we know that its functional isGj„@Z(t)#…
5exp*0

`
„exp@i*0

`k(t)c(t2t)dt#21…q(t)dt, for tP@0,̀ );
hereq(t) is the density of one dot, andc(t) is the shape of
each pulse. Because the correlation function of this nois
^^j(s1)j(s2)&&5*0

`q(t)c(s12t)c(s22t)dt, we can ex-
pect a long-range noise if the shape of the pulse is a pow
law function. Depending on the functionq(t), Campbell’s
noise could be nonstationary. Note that the mean value of
noise is just̂ j(t)&5*0

`q(t)c(t2t)dt. Therefore, using a
power law for the shape ofc(t) we will obtain a strong
non-Markovian SPY(t), and in addition a non-Gaussia
character. Using Eq.~3.11! for the one-time characteristi
function of the SPY(t) we obtain

GY~k1 ,t1!5ei ~k1Y01k1t1Ẏ0!expH E
0

`S expF ik1t1

3E
0

t1
c~ t2t!dtG21D q~t!dtJ . ~B3!

As with the previous example, it is simple to see th
GY(0,t1)51, and in this case the first moment is given by

^Y~ t1!&5~Y01t1Ẏ0!1t1E
0

`

q~t!dtE
0

t1
c~ t2t!dt. ~B4!

Hence, as stated above depending on the functionc(t) an
anomalous behavior~strong non-Markovian dynamics! will
be found.

For a Lévy noise @10# the functional readsGj„@Z(t)#…
5exp„2b*0

`uk(s)uads…, for tP@0,̀ ), with b.0 and a
P(0,2#. Using Eq. ~3.11! for the one-time characteristi
function of the SPY(t) we obtain

GY~k1 ,t1!5ei ~k1Y01k1t1Ẏ0! expS 2b
t1
a11

a11
uk1uaD ,

aP~0,2#. ~B5!

As expected, the one-time probability distributionP(Y@ t1#)
[P(y1 ,t1) is momentless. Note the difference from th
characteristic function of Le´vy flights @10# GL(k,t)
5eikL(0) exp(2btukua). The structure of this SPY(t) can also
be analyzed by studying the scaling invariance ofthe o
time characteristic function; from Eq.~B5!, with Y05Ẏ0
50, we immediately see that

GYS k

L11~1/a! ,Lt D 5GY~k,t !. ~B6!

So the SPY(t) would lead to a smaller fractal divider di
mension@D5a/(11a)# than the Le´vy flights (D5a). But
we cannot take that as a correct fractal dimension becau
implies an absurd. Indeed, this dimension contradicts
property that the Hausdorff dimension is never less than
topological one. We end this section by pointing out that E
~B3! can be used as the starting point to study the interp
between non-Gaussian and long-range correlations.
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