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Harmonic potential driven by long-range correlated noise
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The probability distribution of a particle in a quadratic potential driven by Gaussian long-range correlated
noise has been obtained. The long-time asymptotic relaxation of the stochastic process has been characterized
in terms of the long-range correlated noise appearing in the corresponding stochastic differential equation
defining the process. The particular case when the particle is driven by a Gaussian color noise has also been
revisited, in this way giving its exact probability distribution for all time. By using a characteristic functional
technique reported previously, results for a non-Gaussian long-range correlated noise are also shown. Emphasis
has been placed on solving the plane rotator in the presence of arbitrary random torques having long-range
correlations. In order to show strong and weak non-Markovian effects coming from different sources of noise,
the undamped free particle under the influence of arbitrary accelerations has been analyzed. We also analyze in
detail the structure of the trajectories of the overdamped and undamped free particle.
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[. INTRODUCTION this case we say that we are in the presence of a weak non-
Markovian SPX(t), i.e., after a long transient the dynamical
The long-range noise problem is connected with the staproperties ofX(t) are equivalenfrenormalizedl with respect
tistical properties of a strong non-Markovian stochastic proto the Markovian modef1].
cess(SP driven by that noise, i.e., its dynamics never match The simplest strong non-Markovian model is when
the Markovian dynamics. Consider, for example, the dis-=0; in this limit Eq. (1.1) goes to the generalized Wiener
placementX(t) of a particle under the influence of an har- procesq2], and its statistical properties have been shown to
monic potentiall (X) =3 yX? and a stochastic ter@(t); its ~ share some aspects of the persistent fractional Brownian mo-
equation of motion is governed by the stochastic differentiation (fBm) [3]. This fact follows from studying the fractal
equation(SDE) structure of the realizatiop4] of the SPX(t) (see Appendix
A for a short review. Other strong non-Markovian processes
dXx are those related to second order SDE’s when the noise term
a=—yx+ &t), y=0, Xe(—w,»). (1. [the random forcef(t)] is of the long-range type of Eq.
(1.2. In the present paper the second order SDE
(d?/dt?) ¢(t) + y(d/dt) p= &(t) will be used to study a ran-
dom phase problertsee Sec. Il A. A similar situation oc-
curs when studying the evolution equation of an undamped
S free particle, i.e., an equation of motion like?(dt?)Y(t)
. 2T ) = ¢(t). This problem can also be worked out using our func-
(£(t)&(t2))= (L4t —to|/ 7)™’ 7>0;u=0, (1.9 tional approach for any kind of noig€&aussian or not; see
Appendix B. In particular, for a long-range Gaussian noise
the displacement of the particled O<u<1) will show a  we show in Sec. lll B that the critical valye=1 is also the
strong non-Markovian character, i.e., its dynamicalthreshold between the strong and weak non-Markovian be-
properties—even in its asymptotic regime—uwill not sharehavior for the undamped free particle.
the behavior of the usual overdamped Brownian mofigve The analysis of weak non-Markovian stochastic processes
will be interested in finiter and in the range oft[0,1); has been done using different techniqU&s-7], among
this is so because previous analysis of the generalizegihich path integral formulations have been very successful
Wiener process has shown that a strong non-Markovian beer treating color noise in arbitrary potentigi]. However,
havior (superdiffusion is only obtained ifu<1. The case the path integral technique does not seem to be very useful
n>1 produces weak non-Markovian effects, and the cas¢or studying some of the issues appearing in strong non-
n=1 has logarithmic correctionsThis is not the case if the Markovian processes. The literature on weak non-Markovian
noise is of the short-range typer if >1 in Eq.(1.2)]. In problems is quite vast, but long-range noise problems have
not been solved due to the intrinsic difficulties of the pertur-
bation theory; only recently Masoliver and Waf#j studied
*Senior Independent Research Associate at CONICET. Electronithe probability density functions associated with linear
address: caceres@cab.cnea.gov.ar Langevin-like equations having a long-range Gaussian noise.

If the noise termé(t) is a zero-mean Gaussian SP with a
long-range stationary correlation, say
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[In that reference, Eq4.2), the problem has been worked force representing the mediutthe nois¢. When &(t) is a
out by using the Tauberian theorem; therefore, in order t@ero-mean Gaussian white noise, i.e{£(s1)&(sy))
fulfill the hypothesis of that theorem the valueswfn are  =T",68(s;—sS,), Eq. (1.1) gives rise to the usual Fokker-
restricted tou € (1,2). This is not the case in the presentPlanck dynamic§l]. If the random force were a short-range
paper because we have carried out explicit integrafjdds:  noise, characterized by the stationary correlation
ing our functional approach, we can go one step further, and
study (in an exact way cosine correlations associated with r,
the random phase problem. In the present paper we give a (€(t)é(ty)) =5, exp(— |t —to|/0), 6=0 (2.1
detailed discussion on the strong non-Markovian problem
using the advantages of some exact functional results previhe dynamics of the particle would be driven by a color
ously reported2]. As an additional bonus we can trivially noise, which has been studied extensively in the [&s8].
work out the Gaussian color-noigghort-rangg problem for In the present paper we will be interested in the results
the harmonic potential. coming from the long-range correlatigi.2). Thus let us

We are aware that our method works at least for the quaallow the possibility of having an arbitrary zero-mean Gauss-
dratic potential because we already have the exact generatiiigh noise with correlatiodé(t,) £(t,)). (For a non-Gaussian
functional [2] of the SPX(t). On the other hand, our ap- noise with a long-range correlation, use, for example, a
proach can also be used to work out arbitrary linear stochascampbell noise with a power-law shape pU&k) Note that
tic differential equations, autonomous or not, with or withouta white-noise force can be reobtained fr¢2nl) in the limit
inertia, and for any structure of noise having long-range cor9—0, while the ballistic case can be obtained from 8g2)
relations[2,10]. What is even more important is that using in the limit x— 0. [Only in the simultaneous limita—0 and
the present results we can also study some related bounded:« is the long-range correlatiofl.2) proportional to the
problems[11]. Hence our functional approach is an enlight- jong-correlated limitd—x of the short-range modeR.1);
ening contribution to the analysis of strong non-Markovianthis fact shows the difference between both correlation func-
effects on arbitrary linear SDE's. An application of the tions. Analysis concerning this type of correlation has been
present approach is the study of the dipole correlation for applied to the study of a diffusion-advection equation with a
rigid rotator in the presence of Gaussian random torqueng-range random velocity field.4].]
[12,13,1 having long-range correlations. For this problem et us consider the nois&(t), with te[0,<], to be a
the calculation of the moments and/or correlations of thezero-mean Gaussian noise of intendity and characterized
cosine of the angle is a nontrivial task which can be tackledhy some correlation. Its functional will be
using our functional approacfsee, for example, solutions
(3.4 and(3.9)]. —1 (= (=

It is well known that if a SPX(t) is non-Markovian, its Gf([k(t)])ZEXp(T fo Jo K(sy)k(s2)
complete characterization demands knowledge of the whole
Kolmogorov hierarchy, i.e., thextime joint probability dis-
tribution P[X(t;);X(t,);...;X(tm)], or equivalently all the X<5(51)§(32)>d31d52), (2.2
mtime  moments (X(t1)X(t,)---X(t,n)) or cumulants

((X(t)X(tz) - X(ty))). When partial knowledge of the SP' \yhere the correlatio&(s,)(s,)) could be given by Egs.
is required, the one-time probability distributi® X(t;)] is (1.2) or (2.1), or any other suitable function.

enough. This is the case when only one-time moments of the By using proposition 1 of Ref[2], it follows that the
process(X(t)"™) are needed. In order to know the whole cparacteristic functional of the SR(t) is, for any noise(t),
Kolmogorov hierarchy, knowledge of the characteristic func'given by

tional Gy([k(t)])=(expfik(t)X(t)dt) is required, which of

course is a much more complicated object than the one-time ,
characteristic functiofl]. The notationGy([k(t)]) empha- Gx([Z(t)])=e+'k°X°Gg<
sizes thatG depends on the whole test functik(t), not just
on the value it takes at one particular tirtje The conver-
gence of the integral is achieved because the functigtis
may be restricted to those that vanish for sufficiently large
As a matter of fact, the possibility of having a closed expres- w

sion for the noise characteristic functional allows us to find, k0=f e 7Z(s)ds. (2.4
by quadrature, the whole Kolmogorov hierarchy of the SP 0

X(t). We note that in this paper we do not make use of anyFor the Gaussian case using E2.2) we obtain

partial differential equation, and that the results that we
present are exact solutions for arbitrary noise. 1 (e (e (=
Gx([Z(t)1)=e+'koXoexp[— N ( | ev<sl-s>z<s>ds)
2 JoJol\lJs
J'eV(SZ‘S/)Z(s’)ds’)

S2

f e?t=97(s)ds
t

), (2.3

where X, is the initial condition of the SEX(t) andkg is a
functional of Z(t) given by

II. A STRONG NON-MARKOVIAN GAUSSIAN PROCESS

The equation of motion for the position of a one- X
dimensional overdamped Brownian particle in a quadratic
potential and in a generalized medium is characterized by
Eqg. (1.2). There &(t) € Re is the time-dependent random x(f(sl)g(sz»dsldsz} (2.5
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A non-Gaussian case is sketched in Appendix B. Note 1( [t S
that for any structure of noise, afi-time moments of the SP a(t)= E{ f dslj e’ Ve %27 (¢(s)) &(s,))ds,
X(t) follow from mth-order functional differentiation of 0 0
Gx([ZM®)D, ie., t t
+ Jodsl f " Ver %2 0(¢(s)) é(sy))dsy |-
S1

(X(t)X(tz) - X(tm)) (2.10
é é
—j—m Gx([Z(1)]) . (2.6) Using the fact that the correlatidg(s;) £(s,)) is station-
OZ(ty)  OZ(tp) z=0 ary, the generalized dispersiar(t) can be rewritten in the
form

On the other hand, the Kolmogorov hierarchy can be ob- 1( t—s,

tained by quadrature from the functional. In general, we can ()= = [f e_2751dslf e~ 7%2(&(s,)£(0))ds,
invert the characteristic functional by introducing the 0 0

n-dimensional Fourier transform

* f e s, f e 51 (¢(5,)£(0))dsy
0 0
P(X[t ] X[to];.. i X[ta])

(2.11
=P(Xq,t1;X0,t05.. 3 Xnth) _ _ _
N From this expression, and using the Laplace transform nota-
1 . tion £,[f(t)]=[se “*f(2)dz i.e., z—u, it is possible to
(27" f f dky---diy EXp( _';1 k‘X‘) see that the stationary generalized dispersion is given by

X[Gx([Z() D Izt =k, st—ty)+--+k a(t—t,) - 2.7 1/1
(r(t=°°)=§ 2_,yﬁy[<§(z)f(o)>]

Note that Eq(2.3) is a result which allows us to obtain a
complete characterization of a non-Markovian Gaussian SP +L
X(t). For example, the one-time probability distribution
P(X[t1])=P(x4,t;) is just given in terms ofGy([Z(t)]) ) . ,
evaluated with the test functiod(s)=k,8(s—t,). From Therefore, by using Laplace’s convolution theorem, we fi-
Egs.(2.5) and(2.7) we see that to know the one-time prob- Nally arrive at the expression
ability distribution, we must calculate the integral

Y

f:lef Y(5152><§(Sz)§(0)>d52} ) - (212

o=0(t=2) —ﬁy[<§(z)§(0)>] (2.13

t t
o(ty)= %J lj ' g1 e ¢(s)) £(s,) )ds ds,. This is an exact result which gives the generalized disper-
00 sion of the stationary probability distribution of a non-
(2.8 Markovian Brownian particle in a harmonic potential, in the
presence of an arbitrary correlated Gaussian noise; i.e., from
Thus the one-time(conditiona) probability distribution  Ed. (2.9 the stationary nonequilibrium probability distribu-

P(x,t) reads tion is
P = X 2.14
st(X) ex | (2.

P(x,t)=%f e W exp(— o (t)k?+iB(t)k)dk

where the generalized stationary dispersionis given b
=1/N4mo(t) exd — (x—B(1))?/4c(1)]; (2.9 Eq. (2.13. g y disp g y
In order to exemplify formulg2.13), let us first reobtain
in general,o(t) is given by Eq.(2.8) and B(t)=X,e . the familiar white-noise cas(eFokker—Planck dynaml()sand
Therefore, for the Gaussian case the analysis of the statiofgt US also compute the well studied color-noise problem
ary probability distribution, and the transient relaxation of (Weak non-Markovian caséefore analyzing the long-range
the SPX(t) is reduced to the study of the generalized dis-c2S€-
persiono(t). . )
1. White-noise case
_ 3 Using our approach this case is trivial because
A. Caleulation of o(t=) L[(£(2)£(0))]=L,[T,5(2)]1=T ,/2. Therefore, the station-
Equation (2.8) can be written in a more suitable way, ary generalized dispersion turns out todde=1",/4vy, as can
making easier the analysis of its stationary value and also dfe expected from the corresponding Smoluchowski equation
its asymptotic long-time behavior: &tP(x,t)=[axyx+(l“2/2)a)2(]P(x,t).
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2. Color-noise case B. Asymptotic long-time behavior of o (t)

This is achieved by using correlati@@.1) in Eq. (2.13. The long-time regime of Eq2.8) can be estimated from
First we calculatel,[(£(2)£(0))]1=L,[(I',/26)exp(—2/6)] the first term in Eq.(2.11) if we multiply this result by a
=([,/2)(y6+1) 1. Therefore, the generalized stationary factor of 2. Therefore, the long-time limit of the dispersion

dispersion gives can be written as
T2 1 o(t)= ft e ds ft e 72(&(s,) £(0))ds;
ow=ﬂ(y0+1) , y>0, 6=0, (2.15 0 o 2
1 1-27;
which of course is in agreement with reported results ob- :tzf e‘zmldzlf e~ "%2(&(tz,)£(0))dz,.
tained by using other techniquEs—8|, showing in this way 0 0
the simplicity and elegance of our formula.13. (2.18
3. Long-range case The integral indz,, in Eq.(2.18), can be worked out exactly.
The case where the noise has long-range correlation hdgWe use the long-range correlati¢h.2), we obtain
not been addressed before, to our knowledge. The important 4
fact is that this case can also be analyzed by using correlation r ft_zl e~ N2 dz
(1.2) in formula (2.13. First we have to calculate the 2 (1+tz,/m)* 2
Laplace transform of the long-range noise correlation func- 1
tion: e’ (yn) T,
= [T(1-py7)
c 0))]=L Lor* ~Td—pyr+yt(1-21)], (219
J(E(2)€(0))]=L, A+zn" My yTH Y N, :
= (yP)* 0" T (1=, y7): wherel'(v,Z) is the incomplete gamma functi¢h6]. Using
Eqg. (2.19 in Eq. (2.18, we obtain two contributions: The
(2.16 first one gives

hereI'(v,x) is the incomplete gamma functid5]. There- . v
fore, the stationary generalized dispersion reads tre?”(yr)* T (1—u,y7) fo e *"adz

T =0 (1—e 27, (2.20

.= (yD* 2" T(1-p,y7), ¥>0, w=0. (217
where o, is given in Eq.(2.17. The second contribution

This formula shows that the most important parameter, irf!V€S
our long-range model, is the exponent(the noise correla- L
tion power-law parametgrFrom this result we see a remark- _ yr u—1 —2ytz _ _
able difference compared to short-range modeisak non- trze7(y7) fo © TA=pyrtt(1-z))dz,.
Markovian effects For fixed y and 7, increasing the noise (2.21)
correlation, i.e.,u—0, the stationary dispersiow,, in-
creases. This phenomenon is exactly opposite to that obFhis integral can also be approximated in the long-time limit
tained from a short-range correlated noise, i.e., increaging t—=. Sincez; €[0,1] and, using the expansion of the in-
in Eq. (2.15 predicts, for a fixedy, a decreasing dispersion complete gamma functior; (v,Z)~e~4/Z*~" in the limit
0. . This result can be interpreted heuristically because ibf Z— o, it is possible to seé¢if 0<u<1) that Eq.(2.21)
ne[0,1) the increment of the SR(t) shows a persistence reduces to
in its corresponding generalized Wiener incremesimilar
to superdiffusion in the fBm therefore leading to an in- . . oty exp(— yt(1—2z,))
crease in the dispersiom., (see Appendix A for a detailed —tre”(yn)” f e ra [t(l-z)]* 4

0 Y zy)]

discussion For a fixedu, the behavior of the generalized

dispersiono,, as a function of the friction parameteris the 2 ) 1-p y—1 r1—pw)

same for strong or weak non-Markovian models, i.e., reduc- - 7 e (y)* #(y7) T2—p)

ing (or increasing vy implies a corresponding increaser

reduction of the stationary dispersiosm., . XM(1,2—u,— ), (2.22

Thus we can conclude that a long-rar{gerrelatedl noise
induces strong non-Markovian effects on the)g®), which  where M(a,c,z) is the Kummer confluent hypergeometric
change the behavior of the stationary dispersionas a function [16]. Therefore, the long-time dispersian(t) is
function of the noise correlation. Of course the strong nongiven by the sum of the expressiof&20 and(2.22. Using
Markovian effect also changes the dynamicslaxation of  the power expansion of the Kummer functidi(c,a, —z)
SP X(t); this issue will be examined in detail in the next ~[T'(c)/T'(c—a)](—2z)? for large z and c—a#0,—1,
sections. -2, ..., for thelong-time behavior we obtain
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2(yt)2 He N ) 5 (¢,<}5), so the marginal Sk will always be non-Markovian.
a(t)~ o, 1—m_—m—e_ 7+0(e 2", The exact generating functional of the SRt), for t
' e[0,°], is
y>0, O=spu<l, (2.23

G 4([Z(t)]) = expi (Koo + docbo)

fey(“s)f Z(s')ds'ds
t

S

where O(e~2?7) means an order smaller tha2””. This
result shows that the strong non-Markovian effect changes X Gy )
the relaxation of the particle in the harmonic well. df
€[0,1) the relaxation is nonexponential, and it is character- (3.2
ized by the law~ (yt)2 *e ",

For long-range correlated models, it is also expected tha\]vheredboz #(0) and o=
similar anomalous behavior will occur in calculating more the
complex objects such as the correlation function
((X(t1)X(ty))), see, for example, Sec. Ill. Our approach
gives us the possibility to do this from E.6). In fact the
analysis is reduced to the calculation of the two-time integra

&(0) are the initial conditions of
rotator, and  ko=[pZ(s)ds and Qo
=[oe "°fZ(s')ds'ds. Formula (3.2 follows using
propositions 1 and 3 of refereng2]. This result can also be
peen puttingX(t) = (d/dt) ¢ in Eq.(1.1), and then using Eq.
(A2) with B(t)=1 and the assignatiol/— ¢ and é— X.
1 (4 (b In formula (3.2) the generating functionaG.([k(t)])
o(ty,ty)= Ef f g1 Wer2m)(g(s)) £(s,) )dsds,, characterizes an arbitrary noigét). If we assume a Gauss-
0 Jo ian long-range noise we have to use E(&2) and (1.2).

o ) o Thus in this particular Gaussian caGg,([Z(t)]) adopts its
which is the kernel needed to write the two-time joint prob- gimplest structure, which can immediately be used to calcu-
ability distribution P(xy,t;;X5,t5). See Appendix A for a |t gl themrtime moments of the SB(t), and in general
specific example of this calculation in the simplest situation:any mrtime correlation and cumulant of the stochastic angle
the generalized strong non-Markovian Wiener particle. #(1).

We emphasize that in the presence of short-range corre-- A remarkable conclusion from E¢3.2) is that whenever
Iate(tj_ rrolise;,h_the rezt[ax?tion—after_a t;?]nsi?]ntt—will be exp(l)"[hat we have a closed expression for the functional of the
nential. In this particular case, using the short-range correlas; ; ) ; )
tion (2.1), the g?aneralized dispersio% gives ’ %aﬁ:s? Gg([k(t)]). (_see Append|x B for non-Gaussian ex

pleg, nontrivial objects such as (cos¢(ty)),
(cose(t))cosd(ty)), etc. can be worked out—in an exact
way—using trigonometric algebra. This is so because the
functional of the stochastic cosine is given by
(cod o () Z()dt)=RG,4([Z(t)]). Then using Eq(3.2), for
]. (2.24  the cosine functional we obtain the exact result

r,[1-e 2"

Tshor( 1) = I | T=%A

’)/0(2@7(7+(1/0))t_ e*2'yt_ 1)
(1-6°y%)

This expression is valid at all times and for aAg0 and <COSf ¢(t)Z(t)dt>
y=0. Note that although both summands in E224) have 0

non-Markovian contributions, the long-time limit is expo- , . o %

nential. As a matter of fact, using E€.24 in Eq. (2.9 =Re[ e'("o"”0+q0¢0>G§< f ey“’5>f Z(s')ds'ds )]
gives the exact one-time probability distribution at all times, ! s

for a particle in a harmonic well under the influence of a (3.3
Gaussian color noise. In the limit— 0 this expression co-

incides, of course, with the well known result that could beWe remark that this result is valid for any noise structure.
obtained from Fokker-Planck dynamicsr,,i(t)=(I"s/  Assuming a Gaussian long-range noise, for the mean value
4y)(1—e 27, of the cosine we obtain the result

IIl. REMARKS ON SECOND-ORDER SDE (c0s(t1)) =Re{ Gy Z() D}z(t) = s1t-1y)

A. Linear SDE with inertia (the rigid rotator )

1 . 1
An interesting application of the preceding sections is the =CO{ Pot—(1—e ") ¢y exr{ —52 (tl)}

study of a plane rotatdrl2,13 under the influence of long- Y
range random torques. In this case the SDE is of second (3.4
order, whereZ2 (t) is given by

¢ d 31 t t t

—_— R = — 00 00

dtz ¢+’Ydt¢ g(t)v ¢E( 1 )1 ( . ) Z(t):f dslf dszf ey(sl’t’)dt’

0 0 s;

with an arbitrary noise€(t). [A nonautonomous case could ¢
be if the random torques are time-periodically moduldd xf ev<Sz*t*)dt*(g(sl)g(sz)>. (3.5
Note that(3.1) can be trivially written in terms of variables S
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From Eq.(3.5), and using Eq(1.2), it is possible to see that i _
a strong non-Markovian behavior is found only df<1, (cogg(t1) — b(12))) =Re eX%—(e_’tz—e_m) Q"o)
(logarithmic corrections happen for the cgse-1). Hence 4

in the long-time limit we obtain
21_‘27'#71’}/72 _ Y
E(t)% mtz ;L, t>T,/.LE[0,1), (36) e,y(t_tz)
—0(ty—1) 5 D} 3.7

predicting an asymptotic anomalous dynamigsd(t))

~exp(— [T Yy 21(2— p)(1— ) ]t> #). Only if u>1,

or if the correlation function of the noise is of the short-range ) ) )

type, will the long-time cosine relaxation be exponentialere d(t) is the step function. We note that E@.7) is a

(cose(t))~exp(—Ct), with C=const. result va!ld for any noise st_ructure_. For the particular case of
The cosine-cosine correlation is another important objec® Gaussian long-range noise, using E@s2) and (1.2) we

which can be studied considering the averdges¢(t;) can obtain an exact expression for all time. It is interesting to

— ¢(t,))). In order to evaluate this mean value we can usestudy its asymptotic behavior, as it is then possible to see

the cosine functional with the test functiat(t)=46(t—t,)  that, in the long-time limit, whenu<1, a strong non-

— 8(t—t,). Then using Eq(3.3) we obtain the expression Markovian dynamics is obtained:

e'}'(t*tl)

FZT"“l*y*Z .
e pe-pthe) > uel0. 39

Only if u>1, or if the correlation function of the noise is of the short-range type, will the cosine-cosine corré¢iatiba
long-time regime be exponential:

(codg(ty) — ¢(tp)))~ COS{ % (e”Y2—e ") ) eXD(

. -
<C05(¢(t1)_¢(tz))>“C05<%(e_ﬁz_e_m))eﬂ{"'ﬁ“l_tﬂ), ty,t,>7, u>1, (3.9

i.e., we obtain the same dynamics as when using white nOiSWhereYOEY(O) andYOEY(o) are the initial conditions of

the free particle, and ko=[pZ(s)ds and qq

=[of<Z(s’)ds'ds. Now we focus on a Gaussian long-

] range noise, and we will show the occurrence of strong non-
Here we show that our functional approach can also b@jarkovian results; non-Gaussian examples can be found in

used to study the influence of non-Gaussian noises with Okppendix B. Hence for the Gaussian noise case we obtain

without long-range correlations. To fix ideas, let the secondnat the one-time characteristic function of 8R) is given
order SDE be the one associated to an undamped free Pajy

ticle in presence of an arbitrary random forda general
with (£(t))#0],

B. Undamped free particle under arbitrary random
accelerations

d2 Gy(ky,t) =Gy([Z(t) =k, 8(t—t1)])
2 Y()=E&(1), Ye(—w,x), (3.10
dt — ai(kyYo+ketyYo) 15
so that the random acceleration is an arbitrary n¢&auss- A Ekl E(tl) ’
ian or noj characterized by its function&,([k(t)]); many
non-Gaussian noise functionals can be found in Refs. 312

[1,2,11,17,18 for example, radioactive noise, Campbell

noise, dichotomous noise, i noise[10], etc.(see Appen-  where3(t) can be read off from Eq(3.5), taking the limit
dix B). Therefore, the complete characterization of the SP,=0, and we can write

Y(t) can be given in terms of such noise functionals. Fol-

lowing steps similar to those we made in Sec. Il A, for the

functional of the SPY(t) we obtain E(t)=2ftdsljSldsz(t—sl)(t—52)<§(sl)§(sz)>. (313
} 0 0
Gy([Z(t)])=expi(koYo+doYo)

[ftwf:Z(s’)ds’ds

X Gy

) (3.11) Using Eq.(1.2 in Eq. (3.13 we obtain(for u#1, 2, 3,
’ ' and 4
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3 TZtZ 7_4
(r—1) 2(p—1)(n—2) " (=D (u=2)(np=3)(u—4)
FL(3= )t +(8=3u) 713+ (6 3u) 1> — urt— 4]
(=D (n=2)(p=3)(u—4) '

7t

2(t)=21“27_1[3

r
t+7

(3.19

[Note that we do not use the Tauberian theofamwas used “w
in Ref.[9]) to calculate> (t); therefore, we can analyze any Dg=7, t>7uel0D), (3.20
value of u>0.]

From this result it is simple to see that jf<1, the
asymptotic(long-time limit) of the variance (t) is anoma-
lous:

and the divider fractal dimension along the cukg) would
give asymptotically

2
or /,L_lt4_[L = — > e . .
2(t)~(4—#)?2—#)(1—#)' terpel0l). (313 ’ e Tl o

The caseu=0 gives the ballistic limit, and the cage=1

gives logarithmic corrections. Note from E@.13 that the
Gaussian white-noise ca@mdamped free particlgives the
result > (t)=1/3',t3. From Eq.(3.14) it is possible to see
that if x>1, a weak non-Markovian behavior occurs, i.e., IV. GENERAL CONCLUSIONS

after the transient the following asymptotic behavior is The strong non-Markovian harmonic potential process

reached: X(t) has been completely characterized in terms of its exact
5 functional G ([Z(t)]); see Eq.(2.5 for the Gaussian case.
E(I)* — T3 t>ru>1, (3.16 Particular stress ha_ls been put on I(_)ng—rgnge correlate_d noise
3(u—1) where (&(t;) £(t,)) is of the form given in Eq(1.2). This
i ) ) fairly general method is based upon knowing the character-
as in the white-noise case. _ _ istic functional of the nois& ([ k(t)]), which in the present
From Eqg. (3.12 it is also possible to obtain the paper has mainly been assumed to be Gaussiem-
asymptotic scaling_ of the one-time characteristic function;55ssian statistics will be worked out in Appendix Bhus
therefore, the scaling structure of the St) can be ana- 4,y mtime moment of the SK(t) follows straightforwardly
lyzed. Using Eq(3.12 with Y,=Y,=0, and Eq(3.15, we by taking the functional derivative oBy([Z(t)]); see EQq.
obtain the following asymptotic scaling: (2.6).
We have given an exact expression for the stationary
k (nonequilibrium) probability distribution of a particle in a
Gy W'At harmonic potential and in the presence of an arbitrary corre-
lated Gaussian noise; see Eg8.14). There the generalized

Nevertheless, as noted above, jf>1 a weak non- stationary dispersiowr,, has been calculated explicitsee

Markovian behavior is obtained: hence its asymptotic scalingcd: (2-13] for two nontrivial cases: the color-noise case
is the same as when using a white-naie), i.e., 2.15 (weak non-Markovian effects and the long-range
case(2.17) (strong non-Markovian effecks

K Our physical motivation to study this type of linear SDE
GY<—,At) —Gy(k,t). (3.18 was the model of a rigid rotator in the presence of arbitrary
JA® Gaussian long-range random torques. This problem was
worked out in Sec. Il A, and its solution, for any noiég),
Using Eg.(3.17), we can conclude, fope[0,1), that the  was given in Eq(3.2). In particular, the asymptotic behavior
dynamics of the strong non-Markovian SRt) is different  of the cosine relaxation and the cosine-cosine correlation
compared with the case where the driving no&e) is  have been calculated for the Gaussian long-range case. The
white. The spectrum of the SP(t) behaves asymptotically undamped free particle has been studied in order to analyze
like its scaling structure as a function of the exponent of the
power law appearing in the long-range correlated noise. To
(3.19 show other applications of our functional technique, the one-
' time characteristic function of the undamped free particle has
explicitly been calculated—in an exact way—for several
Of course, in the weak non-Markovian case>1, we non-Gaussian noisdsee Appendix B
asymptotically reobtairs,(f )= 1/f4, as expected. We note The present formulation is exact, and provides a system-
that the box counter fractal dimensi¢hO] of the SPY/(t) atic starting point to obtain higher-order moments or to com-
would give asymptotically pute the whole Kolmogorov hierarchy for any structure of

But we cannot také€3.20 and (3.21) as correct fractal di-
mensions because they are less than one. So the fractal di-
mensions equal the topological dimension.

—Gy(k,t), t>7,uel[0,D. (3.1

1
Sy(f)ocfi—)—,#, t>T,,(LE[0,l).
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the noise; see E(q2.7). The two-time correlation function Without loss of generality, we now assume thatt,; then
((W(t1)W(ty,))) for the generalized strong non-Markovian we obtain
Wiener particle has been calculated to show the persistence
of its generalized increments; see Appendix A. [t
We note that there are no limitations in the exact calcula- (¢ Wt/ W(t2)))= o Jo (§(s1)€(s2))ds1d5

tion of any higher-order moment, etc. In the present paper

we have used a functional technique to solve a problem with _ t t2

natural boundary conditions; the application of this method =20(ty)+ fo ds, | dsy(é(s1)é(s2)).
to a problem with a non-natural boundary conditidd] is

under investigation. (A4)

For the particular case of noiggt) with long-range corre-
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APPENDIX A: THE TWO-TIME CUMULANT OF A (b=D)(p=2)
GAUSSIAN STRONG NON-MARKOVIAN PROCESS +(ty+ 7)27'“—('[2—'[1-0- 7_)27,;].
In order to have a more comprehensive idea of what a (A5)

long-range correlated noise produces in a SDE, let us present
here the generalized strong non-Markovian Wiener particle. In the limitst,;> r andt,> 7 such that,—t,~O(7), and
Let the evolution equation of the displacement of a particldf the noise parameter €[0,1), we see that the two-point

be characterized by the nonautonomous SDE second cumulant of the SR(t) increases with time with a
g power law ~ (t2”#+t53"#) (i.e., superdiffusion Thus a
ARYYE o long-range correlated noise induces a nonlinear temporal be-
G W=AED, We(==.2), (AL Lavior in ((W(L,)W(t,))) as in the fBm forH e (1/2.1].

Note also that both times are present in this nonstationary
with B(t) a sure function of time angl(t) an arbitrary noise.  correlation function. If the noise parameteris>1, we re-
Using proposition 3 of Ref.2], the characteristic functional optain, in the asymptotic long-time regime, the Wiener result
of the SPW(t), for any noise&(t), characterized by its ((W(t)W(t5)))oc minty ).
functional G,([k(t)]), is given by From the exact resulA5) it is possible to see that, in the

. long-time regime, ifue[0,1), the increments of the SP
GW([Z(t)])=e+‘k°W°G§([B(UJ Z(S)dSD’ (A2)  W(t) are not statistically independent. The case 1 also
t shows non-Markovian effects with logarithmic corrections.

To be more precise, let us calculate here a normalized cor-
where ko= [Z(s)ds, and Wo=W(0) is the initial condi- relation function of future incremenf@n(t)—W(0)] with
tion. past incrementgW(0)—W(—1)]:

For the Gaussian cagg.([k(t)]) is given in Eq.(2.2),
and (£(t1)(t,)) can be any correlation, for example the 1
long-range casé€l.2). Let us now study, in the autonomous CH= W([W(O)—W(—t)][W(t)—W(O)])
caseB(t) =1, the correlation function of the displacement of

the particle({W(t;)W(t,))); this function can easily be cal- 1 )
culated by using functional derivatives as in E2.6): —(W(H)?) {WO)W(1)) = (W(0)%) —(W(— ) W(1))
_, 82 InGw([Z(1)]) +(W(=t)W(0))}. (A6)
((W(t)W(t2))) =i ZW
! 2 1z=0 From Eq.(A5) it is simple to show thatfor 0< u+#1,2)
52 [ °°
N LI REZCL r+ (202
6Z(11) 6Z(t =
( 1) ( 2) 0 C(t) Z(M_Z)t_ZT_,’_ ZTM_l(T"Ft)Z_’U'. (A7)
1 © (oo 0
- Ef f (f Z(s)ds) Therefore(in the asymptotic long-time limit only if O<pu
070115 <1 are past increments correlated with future increments,
® i.e., a long-range noise withue[0,1) induces infinitely
X f Z(s’)ds’) long-run correlations in the increments of the 8#t), as in
S2 the persistent fBm. Nevertheless, gE>1 (weak non-

Markovian behavior the normalized correlation function
X(f(sl)f(sz))dsldsz} . (A3) C(t) goes to zero in the limit—c~, and is therefore in
z=0 agreement with a Wiener-like behavior.
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It is also possible to see, using the fact that the né{$g  short-range class a nonanomalous behaviofas/mptoti-
is symmetric and adopting the initial conditiahf(0)=W,  cally) obtained for the SFY(t).
=0 in Eq. (A3), that the variance of an arbitrary increment For a random force having the structure of a Campbell
of our SPW(t) is given by[for 0<u+#1,2 and assuming noise, we know that its functional isG.([Z(t)])
ty<t,] =expfy(exdifok®)yt—ndt]-1)q(7)dr, for te[0);
hereq(7) is the density of one dot, angl(t) is the shape of

1 each pulse. Because the correlation function of this noise is
—([W(ty) —W(t)]P)= ——— [(t,—t -2 %
F2<[ (t2) =Wty 1% (u=1)(n—2) [tz t)(w=2) ((&(s1)€é(s2)))=Joa(n) ¢(s1— 7) (s, — 7)d7, we can ex-
pect a long-range noise if the shape of the pulse is a power-
—r+ T (=) %M. law function. Depending on the functiag(t), Campbell's

(A8)  noise could be nonstationary. Note that the mean value of the

noise is just(£(t))=f¢q(7) ¢(t—7)d7. Therefore, using a
Thus for larget,—t; such thatt,—t;>7, and if the noise power law for the shape ofi(t) we will obtain a strong
parametern [0,1), we see thaf[W(t,)—W(t;)]? in-  non-Markovian SPY(t), and in addition a non-Gaussian
creases with time as-(t,—t;)? #, in agreement with the character. Using Eq(3.11) for the one-time characteristic
picture of a fBm, i.e., a long-range correlated noig) function of the SPY(t) we obtain
induces a power-law behavior in the variance of the incre-
ments of the SRN(t). If the noise parameter in>1 we iKYt ket Y * .
reobtain—in the asymptotic long-time regime—a Wiener- Gy(ky,ty) =e/tia¥oria O)eXp{ fo (exr{'kltl
like result: ([W(t,) —W(t1) 1)~ |t,—tq].

From Eq.(A5) and consistently from Eq$A7) and(A8), % ftl t— Adt
it is possible to see that the spectrum behaves asymptotically 0 Y(t=7)
like Sy(f )< 1/f3~#, the box counter fractal dimension of the
record isDg=1+(u«/2), and the fractal divider dimension As with the previous example, it is simple to see that
along the curven(t) is D=2/(2—u). See Refs[4,10] to  Gy(0t;)=1, and in this case the first moment is given by
study this fractal analysis in terms of the asymptotic scaling

W(At)— \/A27“W(t) for t>7 and ue[0,1). <Y(tl)>:(yo+tl'yo)+tlfmq(7)d7ftl¢(t_ 7)dt. (B4)
0 0

—l>Q(T)dT]. (B3)

APPENDIX B: UNDAMPED FREE PARTICLE UNDER

NON-GAUSSIAN NOISES Hence, as stated above depending on the funafiin an

anomalous behavigstrong non-Markovian dynamitsvill
Here we present a few results concerning non-Gaussiape found.

noise[2,11]. Let us assume, for example, that the source of For a Lery noise[10] the functional read$G([Z(t)])
noise in the SDE3.10 is of the radioactive type; thus we =exp(—b[g|k(s)|*ds), for te[0>), with b>0 and «
use the corresponding noise’s functiondb ((k(t)])  e(0,2]. Using Eq.(3.1) for the one-time characteristic
=[Bf5 exp(—tB+ifpk(s)ds)dt]é for te[0). Here &  function of the SPY(t) we obtain
represents the number of active nucleit&t0, andp is the il

robability per unit of time that an individual decay occurs; iKYt ket 1 «
gote that%hr?s noise is nonstationary. Then using (éql]), Gy(ky ty) =e/faToriulalo exp( -b a+1 kil )
we obtain, for the one-time characteristic function of the SP

Y(1), ae(0,2]. (B5)
Gy(ky,ty) =€ kaYorkataYo) As expected, the one-time probability distributiBiY[t,])
t K =P(y,;,t;) is momentless. Note the difference from the
X ﬁf eXF((ikltl_B)t_i —1t2)dt characteristic function of ey flights [10] G (k,t)
0 2 =e/k-(0) exp(—bilk|%). The structure of this SF(t) can also

K & be analyzed by studying the scaling invariance ofthe one-
+exr{i?ti—ﬁt1” , (B1)  time characteristic function; from EqB5), with Yo=Y,
=0, we immediately see that
whereY, andY,, are the initial conditions of the SP(t). It
is simple to see that E¢B1) fulfills normalizationGy(0,t)

, i =Gy(k1). (B6)
=1, and, for example, the first moment is given by

k
Gy(m,[\t

(Y(t))zi‘lgG (K.1)| So the SPY(t) would lead to a s'maller fractal divider di-
dk —Y k=0 mension D= a/(1+ «)] than the Ley flights (D= «). But
we cannot take that as a correct fractal dimension because it
implies an absurd. Indeed, this dimension contradicts the
property that the Hausdorff dimension is never less than the
topological one. We end this section by pointing out that Eq.
Note that the SFY(t) is also nonstationary, as expected, and(B3) can be used as the starting point to study the interplay
due to the fact that the correlation of the noise is of thebetween non-Gaussian and long-range correlations.

=(Yo+tYq) + % (Bt—1+e AY. (B2)



PRE 60 HARMONIC POTENTIAL DRIVEN BY LONG-RANGE . . . 5217

[1] N. G. van Kampen, irStochastic Processes in Physics and W. Zeller (Kluwer, Dordrecht, 1991 p. 171; M. Dykman and

Chemistry 2nd ed.(North-Holland, Amsterdam, 1992 K. Lindenberg, inSome Problems in Statistical Physieslited
[2] M. O. Ceres and A. A. Budini, J. Phys. 80, 8427(1997. by G. Weiss(SIAM, Philadelphia, 1998 p. 41, and references
[3] B. B. Mandelbrot and J. W. van Ness, SIAM Rel0, 422 therein.

(1968 [9] J. Masoliver and Ke-Gang Wang, Phys. Rev.5E 2987
[4] M. O. Cazeres, Braz. J. Phy&9, 125(1999. (1995, and references therein.

. [10] M. O. C=zeres, J. Phys. 82, 6009(1999.

[5]J. M. Sancho, M. San Miguel, S. L. Katz, and J. D. Gunton, iy 11 o " “gudini and M. O. Caeres, J. Phys. &2, 4005(1999.
Phys. Rev. A26, 1589(1982. o _ [12] C. Wyllie, Phys. Rep61, 327 (1980.

[6] J. M. Sancho and M. San Miguel, Noise in Nonlinear Dy- [13] W. T. Coffey, Yu P. Kalmykov, and J. T. Waldrorhe

namical Systemsdited by P. V. E. McClintock and F. Moss Langevin EquationWorld Scientific, Singapore, 1996and
(Cambridge University Press, Cambridge, 198%ol. 1, references therein.
Chap 3. [14] A. Compte and M. O. Gzeres, Phys. Rev. LetB1, 3140
[7] N. G. van Kampen, J. Stat. Phys4, 1289(1989. (1998.
[8] F. Langouche, D. Roekaerts, and E. Tirape§uinctional In-  [15] V. Ditkine and A. Proudnikov;Transformations Integrales et
tegration and Semiclassical ExpansiofReidel, Dordrecht, Calcul Operationnel(Mir, Moscou, 1978, p. 321.
1982; H. S. Wio, P. Colet, M. San Miguel, L. Pesquera, and [16] J. Spanier and K. B. Oldham\n Atlas of FunctiongSpringer-
M. A. Rodriguez, Phys. Rev. A0, 7312 (1989, and refer- Verlag, Berlin, 1987.

ences therein; R. C. Buceta and E. Tirapegui,Imstabiliies  [17] N. G. van Kampen, Phys. Leffl6A, 104 (1980.
and Nonequilibrium Structure Illedited by E. Tirapegui and [18] N. G. van Kampen, Physica A02, 489 (1980.



